DNA SEQUENCING TECHNOLOGY

Natapol Pornputtapong
17 January 2018
WHY NEED TO KNOW DNA SEQUENCES
WHAT CAN YOU DO WITH A DNA SEQUENCE?

• Geneticists are now able to understand the function of genes by finding distinctive coding regions such as DNA-binding sites, receptor recognition sites and transmembrane domains.

• Scientists have been able to better predict homology among species. Evolutionary biology describes how organisms are related.

• Criminal investigators can use DNA profiling to identify suspects, or exonerate the accused.
DNA SEQUENCE TECHNOLOGY

• First generation: Low throughput methods

• Second generation: High throughput methods

• Third generation: Long read and single molecule methods
FIRST GENERATION

- Sequence by synthesis
 - Sanger sequencing
 - Capillary sequencing
SANGER SEQUENCING:
CHAIN-TERMINATION METHOD

https://binf.snipcademy.com/lessons/dna-sequencing-techniques
SANGER SEQUENCING:
CHAIN-TERMINATION METHOD

<table>
<thead>
<tr>
<th>ddATP</th>
<th>ddCTP</th>
<th>ddGTP</th>
<th>ddTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3’\[\text{T}\text{C}\text{G}\text{T}\text{A}\text{C}\text{T}\text{A}]\]

5’
CAPILLARY SEQUENCING

Primer
ACGTACGTACTCAGATGCT
ACGTACGTACTCAGATGC
ACGTACGTACTCAGATG
ACGTACGTACTCAGAT
ACGTACGTACTCAGA
ACGTACGTACTCAG
ACGTACGTACTCA
ACGTACGTACTC
ACGTACGTACT
ACGTACGTAC
ACGTACGTA

Capillary Electrophoresis

Readout: T C G T A G A C T C A
GENOME SIZE

Time:

http://www.pacb.com/blog/data-release-54x-long-read-coverage-for/
LONG TEMPLATE SEQUENCING:
PRIMER WALKING

Sequence of interest

P1

P2

P3

P4

https://binf.snipacademy.com/lessons/dna-sequencing-techniques
SHOTGUN SEQUENCING

Starting fragments:

- ATCAGTA
- AGTATCA
- TAGCTTGCA
- ATCAGTA
- CAGTCAG
- CAGTATAGC

Reconstruct based on overlapping regions with assembler

scaffold

contig 1
- ATCAGTA
- AGTATCA
- CAGTCAG

contig 2
- CAGTATAGC
- TAGCTTGCA

Aligned sequence:

ATCAGTATCAGTCAGTATAGCTTGCA

https://binf.snipcademy.com/lessons/dna-sequencing-techniques
SECOND GENERATION

- Sequence by ligation
 - SOLiD
 - BGI

- Sequence by synthesis
 - Roche: Pyrosequencing
 - Illumina
 - Ion torrent
STEPS IN SECOND GEN

Library preparation
Amplification
Sequencing reaction
Signal detection
Bioinformatic analysis
LIBRARY PREPARATION

Genomic DNA → Fragmentation → Linear DNA molecules → Adaptor ligation → DNA library

RNA → Reverse transcription → cDNA → Fragmentation → Linear DNA molecules → Adaptor ligation → DNA library
AMPLIFICATION:

EMULSION PCR

Emulsion PCR
(454 (Roche), SOLiD (Thermo Fisher), GeneReader (Qiagen), Ion Torrent (Thermo Fisher))

Emulsion
Micelle droplets are loaded with primer, template, dNTPs and polymerase

On-bead amplification
Templates hybridize to bead-bound primers and are amplified; after amplification, the complement strand disassociates, leaving bead-bound ssDNA templates

Final product
100–200 million beads with thousands of bound template

AMPLIFICATION: NANOBALL

Goodwin, 2016. *Nature Reviews Genetics*
AMPLIFICATION:
BRIDGE
AMPLIFICATION

b Solid-phase bridge amplification (Illumina)

- **Template binding**
 - Free templates hybridize with slide-bound adapters

Bridge amplification
Distal ends of hybridized templates interact with nearby primers where amplification can take place

Cluster generation
After several rounds of amplification, 100–200 million clonal clusters are formed

Patterned flow cell
Microwells on flow cell direct cluster generation, increasing cluster density

Goodwin, 2016. *Nature Reviews Genetics*
SEQUENCING:
BY LIGATION

SEQUENCING:
BY LIGATION

Goodwin, 2016. *Nature Reviews Genetics*
SEQUENCING:
BY SYNTHESIS

Semiconductor sequencing
As a base is incorporated, a single H⁺ ion is released, which is detected by a CMOS-ISFET sensor

Single nucleotide addition
Only one dNTP species is present during each cycle; several identical dNTPs can be incorporated during a cycle, increasing the emitted ions

SEQUENCING: BY SYNTHESIS

SECOND GEN MACHINE

<table>
<thead>
<tr>
<th>Technology</th>
<th>Amplification</th>
<th>Sequencing</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLiD</td>
<td>Emulsion PCR, Template walking</td>
<td>Ligation</td>
<td>Imaging</td>
</tr>
<tr>
<td>BGI</td>
<td>Nanoball</td>
<td>Ligation</td>
<td>Imaging</td>
</tr>
<tr>
<td>IonTorrant</td>
<td>Emulsion PCR</td>
<td>Synthesis: SNA</td>
<td>Voltage measurement</td>
</tr>
<tr>
<td>Illumina</td>
<td>Bridge PCR</td>
<td>Synthesis: CRT</td>
<td>Imaging</td>
</tr>
<tr>
<td>Platform</td>
<td>Read length (bp)</td>
<td>Throughput</td>
<td>Reads</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sequencing by ligation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLiD 5500 Wildfire</td>
<td>50 (SE)</td>
<td>80 Gb</td>
<td>~700 M*</td>
</tr>
<tr>
<td></td>
<td>75 (SE)</td>
<td>120 Gb</td>
<td>~700 M*</td>
</tr>
<tr>
<td></td>
<td>50 (SE)*</td>
<td>160 Gb*</td>
<td></td>
</tr>
<tr>
<td>SOLiD 5500 xl</td>
<td>50 (SE)</td>
<td>160 Gb</td>
<td>~1.4 B*</td>
</tr>
<tr>
<td></td>
<td>75 (SE)</td>
<td>240 Gb</td>
<td>~1.4 B*</td>
</tr>
<tr>
<td></td>
<td>50 (SE)*</td>
<td>320 Gb*</td>
<td></td>
</tr>
<tr>
<td>BGISEQ-500 FCS‡</td>
<td>50–100 (SE/PE)*</td>
<td>8–40 Gb*</td>
<td>NA‖</td>
</tr>
<tr>
<td>BGISEQ-500 FCL‡</td>
<td>50–100 (SE/PE)*</td>
<td>40–200 Gb*</td>
<td>NA‖</td>
</tr>
</tbody>
</table>

*Goodwin, 2016. *Nature Reviews Genetics*
Summary

<table>
<thead>
<tr>
<th>Platform</th>
<th>Read length (bp)</th>
<th>Throughput</th>
<th>Reads</th>
<th>Runtime</th>
<th>Error profile</th>
<th>Instrument cost (US$)</th>
<th>Cost per Gb (US$, approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing by synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion PGM 318</td>
<td>200 (SE)</td>
<td>600 Mb–1 Gb</td>
<td>4–5.5 M*</td>
<td>4 h</td>
<td>1%, indel‡</td>
<td>$49‡</td>
<td>$450–800‡</td>
</tr>
<tr>
<td></td>
<td>400 (SE)*</td>
<td>1–2 Gb*</td>
<td></td>
<td>7.3 h*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Proton</td>
<td>Up to 200 (SE)</td>
<td>Up to 10 Gb*</td>
<td>60–80 M*</td>
<td>2–4 h*</td>
<td>1%, indel‡</td>
<td>$224‡</td>
<td>$80‡</td>
</tr>
<tr>
<td>Ion S5 540</td>
<td>200 (SE)*</td>
<td>10–15 Gb*</td>
<td>60–80 M*</td>
<td>2.5 h*</td>
<td>1%, indel‡</td>
<td>$65 (Ref. 158)</td>
<td>$300*</td>
</tr>
</tbody>
</table>

Goodwin, 2016. *Nature Reviews Genetics*
<table>
<thead>
<tr>
<th>Platform</th>
<th>Read length (bp)</th>
<th>Throughput</th>
<th>Reads</th>
<th>Runtime</th>
<th>Error profile</th>
<th>Instrument cost (US$)</th>
<th>Cost per Gb (US$, approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing by synthesis: CRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illumina MiniSeq Mid output</td>
<td>150 (SE)*</td>
<td>2.1–2.4 Gb*</td>
<td>14–16 M*</td>
<td>17 h*</td>
<td><1%, substitution‡</td>
<td>$50,000 (Ref. 118)</td>
<td>$200–300 (Ref. 118)</td>
</tr>
<tr>
<td>Illumina MiniSeq High output</td>
<td>75 (SE)</td>
<td>1.6–1.8 Gb</td>
<td>22–25 M (SE)*</td>
<td>7 h</td>
<td><1%, substitution‡</td>
<td>$50,000 (Ref. 118)</td>
<td>$200–300 (Ref. 118)</td>
</tr>
<tr>
<td></td>
<td>75 (PE)</td>
<td>3.3–3.7 Gb*</td>
<td>44–50 M (PE)*</td>
<td>13 h</td>
<td><1%, substitution‡</td>
<td>$50,000 (Ref. 118)</td>
<td>$200–300 (Ref. 118)</td>
</tr>
<tr>
<td></td>
<td>150 (PE)*</td>
<td>6.6–7.5 Gb*</td>
<td>24 h*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illumina MiSeq v2</td>
<td>36 (SE)</td>
<td>540–610 Mb</td>
<td>12–15 M (SE)</td>
<td>4 h</td>
<td>0.1%, substitution‡</td>
<td>$99,000‡</td>
<td>~$1,000</td>
</tr>
<tr>
<td></td>
<td>25 (PE)</td>
<td>750–850 Mb</td>
<td>24–30 M (PE)*</td>
<td>5.5 h</td>
<td></td>
<td>$99,000‡</td>
<td>$996</td>
</tr>
<tr>
<td></td>
<td>150 (PE)</td>
<td>4.5–5.1 Gb</td>
<td>24 h*</td>
<td></td>
<td></td>
<td>$996</td>
<td>$212</td>
</tr>
<tr>
<td></td>
<td>250 (PE)*</td>
<td>7.5–8.5 Gb*</td>
<td>39 h*</td>
<td></td>
<td></td>
<td>$996</td>
<td>$142‡</td>
</tr>
<tr>
<td>Illumina MiSeq v3</td>
<td>75 (PE)</td>
<td>3.3–3.8 Gb</td>
<td>44–50 M (PE)*</td>
<td>21–56 h*</td>
<td>0.1%, substitution‡</td>
<td>$99,000‡</td>
<td>$250</td>
</tr>
<tr>
<td></td>
<td>300 (PE)*</td>
<td>13.2–15 Gb*</td>
<td>21–56 h*</td>
<td></td>
<td></td>
<td>$99,000‡</td>
<td>$110‡</td>
</tr>
<tr>
<td>Illumina NextSeq 500/550 High output</td>
<td>75 (SE)</td>
<td>25–30 Gb</td>
<td>400 M (SE)*</td>
<td>11 h</td>
<td><1%, substitution‡</td>
<td>$250‡</td>
<td>$43</td>
</tr>
<tr>
<td></td>
<td>75 (PE)</td>
<td>50–60 Gb</td>
<td>800 M (PE)*</td>
<td>18 h</td>
<td></td>
<td>$250‡</td>
<td>$41</td>
</tr>
<tr>
<td></td>
<td>150 (PE)*</td>
<td>100–120 Gb*</td>
<td>29 h*</td>
<td></td>
<td></td>
<td>$250‡</td>
<td>$33‡</td>
</tr>
</tbody>
</table>

Goodwin, 2016. *Nature Reviews Genetics*
THIRD GENERATION

• Sequence by synthesis
 • PACBIO

• Sequence by reading
 • Oxford Nanopore
2ND TO 3RD GEN PROTOCOL

Library preparation

Amplification

Sequencing reaction

Signal detection

Bioinformatic analysis

Library preparation

Sequencing reaction

Signal detection

Bioinformatic analysis
PACBIO

Goodwin, 2016. *Nature Reviews Genetics*
OXFORD NANOPORE

<table>
<thead>
<tr>
<th>Platform</th>
<th>Read length (bp)</th>
<th>Throughput</th>
<th>Reads</th>
<th>Runtime</th>
<th>Error profile</th>
<th>Instrument cost (US$)</th>
<th>Cost per Gb (US$, approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific BioSciences RS II</td>
<td>~20 Kb</td>
<td>500 Mb–1 Gb*</td>
<td>~55,000*</td>
<td>4 h*</td>
<td>13% single pass, ≤1% circular consensus read, indel‡</td>
<td>$695‡</td>
<td>$1,000‡</td>
</tr>
<tr>
<td>Pacific Biosciences Sequel</td>
<td>8–12 Kb⁶⁹</td>
<td>3.5–7 Gb*</td>
<td>~350,000*</td>
<td>0.5–6 h*</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford Nanopore MK 1 MinION</td>
<td>Up to 200 Kb¹⁵⁹</td>
<td>Up to 1.5 Gb¹⁵⁹</td>
<td>>100,000 (Ref. ¹⁵⁹)</td>
<td>Up to 48 h¹⁶⁰</td>
<td>~12%, indel¹⁵⁹</td>
<td>$1,000*</td>
<td>$750*</td>
</tr>
<tr>
<td>Oxford Nanopore PromethION</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUESTIONS?